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We have prepared the internal states of two trapped ions in
both the Bell-like singlet and triplet entangled states. In con-
trast to all other experiments with entangled states of either
massive particles or photons, we do this in a deterministic
fashion, producing entangled states on demand without selec-
tion. The deterministic production of entangled states is a
crucial prerequisite for large-scale quantum computation.

Since the seminal discussions of Einstein, Podolsky,
and Rosen, two-particle quantum entanglement has been
used to magnify and confirm the peculiarities of quantum
mechanics [1]. More recently, quantum entanglement has
been shown to be not purely of pedagogical interest, but
also relevant to computation [2], information transfer [3],
cryptography [4] and spectroscopy [5,6]. Quantum com-
putation (QC) exploits the inherent parallelism of quan-
tum superposition and entanglement to perform certain
tasks more efficiently than can be achieved classically [7].

Relatively few physical systems are able to approach
the severe requirements of QC: controllable coherent
interaction between the quantum information carriers
(quantum bits or qubits), isolation from the environment,
and high-efficiency interrogation of individual qubits.
Cirac and Zoller have proposed a scalable scheme uti-
lizing trapped ions for QC [8]. In it, the qubits are two
internal states of an ion; entanglement and computation
are achieved by quantum logic operations on pairs of ions
involving shared quantized motion. Previously, quantum
logic operations were demonstrated between a single ion’s
motion and its spin [9]; the requirements of QC have been
explored experimentally in related cavity QED systems
[10]. In this Letter, we use conditional quantum logic
transformations to entangle and manipulate the qubits
of two trapped ions.

Previous experiments have studied entangled states of
photons [11,12] and of massive particles [13–15]. These
experiments rely in some way on random processes, ei-
ther in creation of the entanglement, as in photon cas-
cades [11], photon down-conversion [12] and proton scat-
tering [13], or in the random arrival times of atoms in
a cavity [14]. Recent results in NMR of bulk samples
have shown entanglement of particle spins [15,16] but be-
cause pseudo-pure states are selected through averaging
over a thermal distribution, the signal is exponentially
degraded as the number of qubits is increased. All the
above processes are selectable but are not deterministic
generators of entanglement. By deterministic, we mean

that a known and controllable quantum state of (all of) a
given set of particles is generated at a specified time [17].
Deterministic entanglement coupled with the ability to
store entangled states for future use is crucial for the re-
alization of large-scale quantum computation. Ion-trap
QC has no fundamental scaling limits; moreover, even
the simple two-ion manipulations described here can, in
principle, be incorporated into large-scale computing, ei-
ther by coupling two-ion subsystems via cavities [18], or
by using accumulators [6].

In this Letter, we describe the deterministic generation
of a state which under ideal conditions is given by

|ψe(φ)〉 =

[
3

5
| ↓↑〉 − eiφ 4

5
| ↑↓〉

]
(1)

where | ↓〉 and | ↑〉 refer to internal electronic states of
each ion (in the usual spin-1/2 analogy) and φ is a con-
trollable phase-factor. For φ = 0 or π, |ψe(φ)〉 is a good
approximation to the usual Bell singlet (−) or triplet

(+) state |ψ∓B〉 = [| ↓↑〉∓ | ↑↓〉]/
√

2 since |〈ψ−B |ψe(0)〉|2 =
|〈ψ+

B |ψe(π)〉|2 = 0.98 [19]. The fidelity of our experi-
mentally generated state described by density matrix ρ±

is 〈ψe(π, 0)|ρ±|ψe(π, 0)〉 ≈ 〈ψ±B |ρ±|ψ±B〉 ≈ 0.70, so that
for all practical purposes, we can consider ρ± to be an
approximation to the Bell states. We describe a novel
means of differentially addressing each ion to generate
the entanglement and a state-sensitive detection process
to characterize it.

The apparatus is described in Ref. [20]. We confine
9Be+ ions in an elliptical rf Paul trap (major axis ≈
525µm, aspect ratio 3:2) with a potential applied between
ring and end-caps of V0 cos ΩT t + U0 with ΩT /2π ≈ 238
MHz, V0 ≈ 520 V. The trap is typically operated over the
range 12 V < U0 < 17 V leading to secular frequencies of
(ωx, ωy, ωz)/2π = (7.3, 16, 12.6) to (8.2, 17.2, 10.1) MHz.
The ion-ion spacing (along x̂) is l ≈ 2µm.

The relevant level structure of 9Be+ is shown in Fig.
1a. The qubit states are the 2s 2S1/2 |F = 2,mF =

2〉 ≡ | ↓〉 and 2s 2S1/2 |F = 1,mF = 1〉 ≡ | ↑〉 states.
Laser beams D1 and D2 provide Doppler precooling and
beam D3 prevents optical pumping to the |F = 2,mF =
1〉 state. The cycling | ↓〉 → 2p 2P3/2 |F = 3,mF =
3〉 transition driven by the σ+-polarized D2 laser beam
allows us to differentiate | ↑〉 from | ↓〉 in a single ion with
≈90% detection efficiency by observing the fluorescence
rate.

Transitions | ↓〉|n〉 ↔ | ↑〉|n′〉 (where n, n′ are vibra-
tional quantum numbers) are driven by stimulated Ra-
man processes from pairs of laser beams in one of two
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geometries. Two types of transitions are driven: the “car-
rier” with n′ = n, and the red motional sideband (rsb)
with n′ = n−1 [21]. With reference to Fig. 1a, the pair of

Raman beams R1 ⊥ R2 has difference-wavevector ~δk ‖ x̂
and is used for sideband cooling (to prepare | ↓↓〉|0〉),
driving the x̂-rsb, and to drive the “x̂-carrier”. Beam

pair R2 ‖ R3 has ~δk ≈ 0 and is not sensitive to motion;
this pair drives the “co-propagating carrier” transition.

Two trapped ions aligned along x̂ have two modes
of motion along x̂: the center-of-mass (COM) mode
at frequency ωx and the stretch mode, at frequency
ωstr =

√
3ωx in which the two ions move in opposite di-

rections. We sideband-cool both of these modes to near
the ground state, but use the stretch mode on transitions
which involve the motion since it is colder (99% probabil-
ity of |n = 0〉) than the COM and heats at a significantly
reduced rate [20]. The relevant two-ion qubit level struc-
ture dressed by the quantized harmonic stretch motion
is shown in Fig. 1b (we leave out the COM for clarity).
In general, all four Rabi rates Ωi±, i ∈ {1, 2} connecting
the levels are different and depend on n. Fig. 1b shows
the states coupled on the rsb with Rabi frequencies (in
the Lamb-Dicke limit)

Ωi+ =
√
n η′Ωi; Ωi− =

√
n+ 1 η′Ωi (2)

where η′ = η/
√

2
√

3 is the stretch-mode two-ion Lamb-
Dicke parameter (with single-ion η ≈ 0.23 for ωx/2π ≈
8 MHz) and Ωi is the carrier Rabi frequency of ion i
[9]. On the carrier, the ions are not coupled and the
time evolution is simply that of independent coherent
Rabi oscillations with Rabi frequencies Ωi. On the co-
propagating carrier, Ω1 = Ω2 ≡ Ωc.

In the Cirac-Zoller scheme, each of an array of tightly
focused laser beams illuminates one and only one ion for
individual state preparation. Here we pursue an alter-
native technique, based not on Ωi → 0 for all but one
ion, but simply on Ω1 6= Ω2. Differential Rabi frequen-
cies can be used conveniently for individual addressing
on the x̂-carrier: for example, if Ω1 = 2Ω2, then ion 1
can be driven for a time Ω1t = π (2π-pulse, no spin-flip)
while ion 2 is driven for a π-pulse resulting in a spin-flip.

Our technique for differential addressing is to control
the ion micro-motion. To a good approximation, we can
write

Ωi = ΩcJ0(| ~δk|ξi) (3)

where J0 is the zero-order Bessel function and ξi is the
amplitude of micro-motion (along x̂) associated with ion
i, proportional to the ion’s mean displacement from trap
center. The micro-motion is controlled by applying a
static electric field to push the ions [22] along x̂, moving
ion 2 (ion 1) away from (toward) the rf null position,
inducing a smaller (larger) Rabi frequency. The range
of Rabi frequencies explored experimentally is shown in
Fig. 2a.

We determine Ω1,2 by observing the Rabi oscillations
of the ions driven on the x̂-carrier. An example with

Ω1 = 2Ω2 is shown in Fig. 2b. We detect a fluorescence
signal S(t) = 2P↓↓+(1+α)P↓↑+(1−α)P↑↓ where Pkl =
|〈ψ(t)|kl〉|2, k, l ∈ {↑, ↓}, ψ(t) is the state at time t and
|α| � 1 describes a small differential detection efficiency
due to the induced differential micro-motion. Driving on
the x̂-carrier for time t starting from | ↓↓〉|0〉, S(t) can
be described by

S(t) = 1 + (1/2)(1 + α) cos(2Ω1t)e
−γt

+ (1/2)(1− α) cos(2Ω2t)e
−(Ω2/Ω1)γt (4)

where γ allows for decay of the signal [21]. The local max-
imum at t = 2.4 µs on Fig. 2b is the 2π : π point at which
ion 1 has undergone a 2π-pulse while ion 2 has undergone
a π-pulse resulting in | ↓↓〉|0〉 → | ↓↑〉|0〉. Driving a π : π
pulse on the co-propagating carrier transforms | ↓↑〉|0〉 to
| ↑↓〉|0〉 and | ↓↓〉|0〉 to | ↑↑〉|0〉, completing generation of
all four internal basis states of Fig. 1b.

Now consider the levels coupled by the first rsb shown
in Fig. 1b. If we start in the state |ψ(0)〉 = | ↓↑〉|0〉 and
drive on the (stretch mode) rsb for time t,

|ψ(t)〉 = − iΩ2−
G

sin(Gt)| ↓↓〉|1〉

+

[
Ω2

2−
G2

(cosGt− 1) + 1

]
| ↓↑〉|0〉

+ eiφ
[

Ω2−Ω1−
G2

(cosGt− 1)

]
| ↑↓〉|0〉 (5)

where G = (Ω2
2− + Ω2

1−)1/2 with Ωi− from Eq. 2 with

n = 0. The phase factor φ = ~δk · 〈~x1 − ~x2〉 depends on
the spatial separation of the ions and arises because each
ion sees a different phase in the x̂ travelling-wave Raman
field. The ion-ion spacing varies by δl ≈ 100 nm over
the range of U0 cited above (φ = 0 for U0 = 16.3 V and
φ = π for U0 = 12.6 V, with dφ/dU0 in good agreement
with theory). For Gt = π, the final state is ψe(φ) from
Eq. 1. Note that Ω1 = (

√
2 + 1)Ω2 would generate the

Bell states (but we would not have access to the initial
state | ↓↑〉, since Ωi are fixed throughout an experiment).

We now describe our two-ion state-detection proce-
dure. We first prepare a two-ion basis state |kl〉, ap-
ply the detection beam D2 for a time τd ≈ 500µs and
record the number of photons m detected in time τd. We
repeat this sequence for N ≈ 104 trials and build a his-
togram of the photons collected (Fig. 3). To determine
the populations of an unknown state, we fit its histogram
to a weighted sum of the four reference histograms with
a simple linear least-squares procedure.

We observe that the | ↑↑〉 count distribution (Fig.
3a) is not a single peak at m = 0, corresponding to
the expected zero scattered photons. Counts at m = 1
and m = 2 are due to a background of 200-400 pho-
tons per second. The counts in bins m > 2 (which
account for ∼ 10% of the area) are due to a depump-
ing process in which D2 off-resonantly drives an ion out
of | ↑〉 ultimately trapping it in the cycling transition.
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We approximately double the depumping time by ap-
plying two additional Raman “shelving” pulses (| ↑〉 →
2S1/2|F = 2,mF = 0〉 →2S1/2|F = 1,mF = −1〉; | ↓〉
unaffected) after every state preparation. Nevertheless,
this results in an average difference of only 10-15 detected
photons between an initial | ↓〉 and | ↑〉 state, as shown
in Fig. 3 [23]. The distributions associated with | ↓↑〉
,| ↑↓〉 and | ↓↓〉 are non-Poissonian due to detection laser
intensity and frequency fluctuations, the depumping de-
scribed above and | ↓〉 → | ↑〉 transitions from imperfect
polarization of D2.

One may ask: what is our overall two-ion state-
detection efficiency on a per experiment basis? To ad-
dress this issue, we distinguish three cases: 1) | ↑↑〉, 2)
| ↑↓〉 or | ↓↑〉, 3) | ↓↓〉. Now define case 1 to be true
when m ≤ 3, case 2 when 3 < m < 17, and case 3 when
m ≥ 17. This gives an optimal 80% probability that the
inferred case (1, 2, or 3) from a measured m in a single
experiment is the actual case.

We have generated states described by density opera-
tors ρ± in which the populations (diagonals of ρ±) are
measured to be P↓↑ ≈ P↑↓ ≈ 0.4, P↓↓ ≈ 0.15, P↑↑ ≈
0.05. To establish coherence, consider first the Bell
singlet state ψ−B which has P↓↑ = P↑↓ = 1/2. Since
ψ−B has total spin J = 0, any J-preserving transfor-
mation, such as an an equal rotation on both spins,
must leave this state unchanged, whereas such a rota-
tion on a mixed state with populations P↓↑ = P↑↓ = 1/2
and no coherences will evolve quite differently. We ro-
tate both spins trough an angle θ by driving on the
co-propagating carrier for a time t such that θ = Ωct.
Fig. 4a shows the time evolution of an experimental
state which approximates the singlet Bell state. Con-
trast this with the approximate “triplet” state shown
in Fig. 4b. More quantitatively, the data show that
ρ± is decomposed as ρ± = C|ψ±B〉〈ψ±B | + (1 − C)ρm in
which ρm has no coherences which contribute to the mea-
sured signal (off diagonal elements connecting | ↑↓〉 with
| ↓↑〉 and | ↑↑〉 with | ↓↓〉), and C = 0.6 is the con-
trast of the curves in Fig. 4. This leads to a fidelity of
〈ψ±B |ρ±|ψ±B〉 = (P↓↑ + P↑↓ + C)/2 ≈ 0.7.

The non-unit fidelity of our states arises from several
technical factors. The first is Raman laser intensity noise
which gives rise to a noise-modulated Rabi-frequency.
The second is a second-order (in η) effect on Ωi due to
the motional state of the COM mode [6], which is not in
the ground state at all times [20]. These effects can be
seen in Fig. 2b as a decay envelope on the data (mod-
eled by γ of Eq. 4) and cause a 10% infidelity in initial
state preparation [24]. This initial imperfection in state
preparation, the contribution of the above factors on the
rsb pulse and a first order effect due to imperfect ground-
state preparation of the stretch mode are responsible for
the rest of the infidelity.

The micro-motion-induced selection of Rabi frequen-
cies as here demonstrated is sufficient to implement uni-
versal quantum logic with individual addressing [8]. To

isolate ion 1, we arrange the trap strength and static
electric field so that ion 1 is at the rf null position
(Ω1 = ΩcJ0(0) = Ωc) and ion 2 is at a position such

that Ω2 = ΩcJ0(| ~δk|ξ2) = 0. To isolate ion 2, we drive
on the first motional sideband of the rf-micro-motion by
adding ΩT /2π = ±238 MHz to the difference frequency
of the Raman beams resulting in Ω1 = ΩcJ1(0) = 0

and Ω2 = ΩcJ1(| ~δk|ξ2) = 0.519Ωc. This provides a
means of individual addressing, with which the Cirac-
Zoller scheme [8] can be implemented for two ions.

In conclusion, we have taken a first step in the quan-
tum preparation and manipulation of entangled states
of multiple trapped ions— a step which is crucial for
quantum computations with trapped ions. We have en-
gineered entangled states deterministically, that is, there
is no inherent probabilistic nature to our quantum entan-
gling source. We have developed a two-ion state-sensitive
detection technique which allows us to measure the diag-
onal elements of the density matrix ρ± of our states, and
have performed transformations which directly measure
the relevant off-diagonal coherences of ρ±.
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FIG. 1. (a) Relevant 9Be+ energy levels. All optical transi-
tions are near λ = 313 nm, ∆/2π = 40 GHz and ω0/2π = 1.25
GHz. R1-3: Raman beams. D1-3: Doppler cooling, optical
pumping and detection beams. (b) The internal basis qubit
states of two spins shown with the vibrational levels connected
on the red motional sideband. The labeled atomic states are
as in (a); n is the motional-state quantum number (note that
the motional mode frequency ωstr � ω0). Ωi± are the Rabi
frequencies connecting the states indicated.
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FIG. 2. (a) Normalized x̂-carrier Rabi frequencies Ωi/Ωc of
each of two ions as a function of center-of-mass displacement
from the rf-null position d. The solid curves are Eq. 3 where
the distance between the maxima of the two curves sets the
scale of the ordinate, based on the known ion-ion spacing
of l ≈ 2.2µm at ωx/2π = 8.8 MHz. (b) Example of Rabi
oscillations with Ω1 = 2Ω2. A fit to Eq. 4 determines that
Ω1/2π = 2Ω2/2π ≈ 225 kHz, γ/2π ≈ 6 kHz and α ≈ −0.05.
The arrow in (a) indicates the conditions of (b).
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currence P (m) of m photons detected in 500 µs vs. m, taken
over ∼ 104 trials. Note the different scales for each graph.
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FIG. 4. Probabilities P↓↑+P↑↓ and P↓↓+P↑↑ as a function
of time t driving on the co-propagating carrier, starting from
(a) the “singlet” ψe(0) and (b) the “triplet” ψe(π) entangled
states. The equivalent rotation angle is 2Ωct (Ωc/2π ≈ 200
kHz for these data). The solid and dashed lines in (a) and
(b) are sinusoidal fits to the data, from which the contrast is
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5


